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Abstract

In this paper, we analyze the modification of fast particles on the nonlinear radial displacement of m ¼ 1 internal kink mode with a shoulder-
like equilibrium current theoretically. Using the matching method on the solutions of the outer and inner regions, we derive the analytical form of
nonlinear radial displacement in the limit of q' ¼ q" ¼ 0, which is valid to the cases of weak shear due to a slight flattening of the q(r) profile
around q ¼ 1. We have taken into consideration the effects of the circulating and trapped fast particles on the nonlinear state of the mode. It is
found that a fast particle can modify the nonlinear saturation level by the change of potential energy, depending on the fast particle properties. By
the matching of linear dispersion relation to early nonlinear result, we also obtain the relations of radial displacement to the mode frequency and
linear growth rate, and discuss the scaling for different stabilities of the MHD modes.
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1. Introduction

The shoulder-like current profile with the locally low shear
at q ¼ 1 surface has been firstly observed in TEXTOR
tokamak plasmas [1]. In the absence of fast particles, the linear
properties of internal kink mode for a locally flattened q-
profile at q ¼ 1 surface have been studied theoretically and
numerically [2,3]. It is found that the linear internal kink mode
is unstable due to the destabilization of both the current and
pressure gradients [4]. More recently, under a similar equi-
librium, the stability of kink/tearing mode was discussed by
Connor et al. [5]. Theoretically, the linear internal kink in-
stabilities, including the toroidal effect, have been widely

studied by variational principle method for a finite magnetic
shear, but the nonlinear theory of the mode for a locally zero
magnetic shear has not been well developed [4,6]. In addition,
there is little work to investigate the nonlinear saturation
amplitude of the m ¼ 1 instability with fast particles in this
special configuration, which may be important in ITER-like
plasmas with lower hybrid current drive (LHCD) [7].

In this paper, we will focus on the nonlinear m ¼ 1 internal
kink modes to derive a relation of the nonlinear mode
amplitude and to further explore the role of fast particles for a
locally modified current equilibrium. Then we will derive the
modified saturated amplitude of the mode including kinetic
effect of energetic particles (EPs) by matching the solution of
inertial layer to that in the outer region, where inertia is
negligible. We will also present the saturation amplitude of the
mode modified by magnetohydrodynamic (MHD) and fast
particle due to the waveewave interactions.
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The paper is organized as follows. In Sec. 2, we will derive
the effect of MHD nonlinearity on the modes by asymptotic
matching and discuss the modification of locally flattened q-
profile on mode amplitude by the fast particles in the limit of

q's ¼ q''s ¼ 0. To further clarify the effect of mode stability and
frequency on the nonlinear mode amplitude, in Sec. 3, we will
discuss the relation of different stabilities of the MHD modes.
Finally, we will make a summary in Sec. 4.

2. Derivation of nonlinear mode amplitude with EPs

To begin the derivation, we use a locally flattened q-profile
as [2].

qðrÞ ¼ 1þ 2
�
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r2 � r2s
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where qðrsÞ ¼ 1 and the constant C0 is set to control the
flatness of the q-profile, rs is the radial location of q ¼ 1
rational surface. For a slightly flattened q-profile as C0/∞,
Eq. (1) becomes a parabolic function qðrÞz1þ 2ðr2 � r2s Þ,
which is similar to the form of the monotonic q-profile. The
pressure profile is pðrÞ ¼ p0½1� ðr=aÞ�2 with p0 being the
pressure value at axis and a being the minor radius [2]. Due
to the important role of EPs on the linear mode, it is neces-
sary to include the EPs effect on the nonlinear analysis of
mode. Following the previous works, the MHD and the ki-
netic contribution on potential energy can be written as
[4,8,9].
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where x is the displacement vector, m h is the energetic ion
mass, k ¼ vejj=vl is the field line curvature, magnetic field
B ¼ B0ð1� r cos q=RÞ with B0 being B at axis and R being the
major radius, G is the adiabatic index, pc is the background
plasma beta, udh is the averaged toroidal precession frequency,
Kb ¼ H ðdq=2pÞð1� aBÞ�1=2, a ¼ m=E with the magnetic
moment m and kinetic energy E ¼ v2=2, Q ¼ ðuvE þ bu*ÞF0

with the equilibrium distribution of fast particles F0, bu* ¼ �
½i=ucðbejj � Vln F0Þ�$V with the gyro-frequency uc, and J is
the bounce average of J ¼ ðaB=2ÞV$x⊥ � ð1� 3aB=2Þx⊥$k.
u ¼ ur þ ig with ur being the mode frequency and g being
the mode growth rate.

In previouswork, the nonlinear waveewave interaction in the
inertial layerwas found to play an important role in the dynamics
of them¼ 1MHDmode [6]. In the finite positive shear case, the
background ion in the layer can significantly modify the

eigenvalue of the dispersion relation. Accordingly, we further
study the local weak shear case and further derive the nonlinear
saturation amplitude of the mode with energetic ions.

Following Ref. [6], flux function satisfies jðr; qÞ ¼ j½r�
xðx;qÞ�, where q is the poloidal angle. Magnetic flux, thus, can
be presented by Taylor formula expanded near the rational
surface for the locally flattened q-profile as

j¼ j0 þ xj0
0 þ

x2

2!
j00
0 þ

x3

3!
j
ð3Þ
0 :::; ð4Þ

where j
00
0 ≡ rsðk$BÞ0s ¼ � BqðrsÞq0ðrsÞ, x ¼ ðr� rsÞ=rs. For

the flattened q-profile, first non-vanishing derivative of qðrsÞ is
up to the third order of the derivative, q

000 ðrsÞ, then we obtain
dj=dx ¼ rsB0ðx3q000

=6Þ=R by Taylor expanded near q ¼ 1
surface for a resonant mode. Rescaling j by ðrs=RÞB0q

000
=6, it

leads to

dj=dx¼ x3: ð5Þ
In the layers, thenonlinearhelical equilibriumisgivenbyV2j ¼

JzðjÞ. By multiplying dj=dr, dðdj=drÞ2=dr ¼ 2JzðjÞðdj=drÞ
and integrating along r, we obtain ðdj=drÞ2 ¼ FðjÞþ GðqÞ,
where FðjÞ ¼ 2

R
Jzðj0Þdj0, GðqÞ are the function of integra-

tion. We further transform the unperturbed flux surface j to the
equivalent surface r ¼ rs, and rewrite Eq. (5) as

ðdj=dxÞðdx=drÞ ¼ ½f ðxÞ þ gðqÞ�1=2. Using r� x ¼ x, the
amplitude of radial displacement x has the form of

vxðx;qÞ=vx¼ x3½f ðxÞ þ gðqÞ��1=2 � 1: ð6Þ
Using the limit of the incompressibility conditions, i.e.H
rdrdq ¼ const:, it requires f ðxÞ and gðqÞ to satisfyI
½f ðxÞ þ gðqÞ��1=2

dq¼ x�3: ð7Þ

We integrate Eq. (6) on x and obtain the nonlinear
displacement in the layer

xðx;qÞ ¼
Zx

0

8<: x3

½ f ðxÞ þ gðqÞ �1=2
� 1

9=;dxþ hðqÞ ; ð8Þ

where the last term of right hand side of Eq. (8),hðqÞ, is the
arbitrary function of q. Further solution of matched asymptotic
expansions is similar to Ref. [6], and it is found that xðx; qÞ
should be finite when jxj/∞ leading to f ðxÞ/x6. Then the
final form of Eq. (8) is

xðx;qÞ ¼ 1

10

gðqÞ
x5

±
Z∞
0

8<: x3

½f ðxÞ þ gðqÞ �1=2
� 1
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where the sign “±” indicates x/±∞. This indicates the
nonlinear perturbation in the inner layers around rs for a
weakly positive shear of q's ¼ q''s ¼ 0. In order to match the
solution to that in the exterior region, we also further give a
linear ideal MHD solution for the outer plasma neglecting the
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inertia. Then the radial displacement in the region of r< rs for
the m ¼ 1 Fourier component is determined by [6]

vxðrÞ
vr

¼ x0
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Zr

0
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and for r> rs,
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r3ðk$BÞ2 ; ð11Þ

where the MHD term has a form of bgðrÞ
¼ 2k2z r

2p0 þ B2
qk

2
z rð1� nqÞð3þ nqÞ and the nonlinear

kinetic contribution bkðr;uÞ is given by the kinetic energy
principle [10], as
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Since the kinetic effect of fast particles is only localized in

the regions of r< rs for the internal kink modes [8,9], the
asymptotic matching of different regions can be carried out.
As the boundary conditions, when jxj/∞, the displacement
in the inner layers satisfies x/∞; xð∞Þ ¼ 0; and x/� ∞;

xð� ∞Þ ¼ x0 cos q, respectively. Using xðrÞ ¼ x0 þ ~xðrÞ;
integrating Eq. (8), in the outer region when r/r�s , we obtain
the nonlinear displacement as
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On the other hand, if r/rþs , the displacement with the

boundary condition xðrÞ ¼ ~xðrÞ has a form of
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Further matching the outer layer solution to the inner layer
solution, we find that the forms of hðqÞ and gðqÞ satisfy
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respectively. To simplify the form of this equation and obtain
an expression of x0, we further expand gðqÞ ¼ P

Amcos mq
and use gðqÞz2

H ½gðqÞcos q�dqcos q, then Eq. (16) becomesI
g cos qdq¼� 2x0
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where the potential energy is given in Eq. (3). Using
f ðxÞ ¼ f ð�xÞ [6], the integral equation for gðqÞ can be written
asZ∞
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where Ic ¼ ½f ðxÞ þ gðqÞ�1=2. In order to derive nonlinear
amplitude by Eq. (17), we multiply Eq. (18) by g and integrate
it over q, then we have
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respectively, where 〈A〉 ¼ 1

2p

H
Adq, f and g are rescaled by

g/x60g, f/x60f . From Eqs. (19) and (20), the nonlinear
displacement of the mode can be represented as
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and Pmax is the maximum value of P.

3. Analysis and discussion

Neglecting the kinetic term in Eq. (21), the nonlinear radial

displacement can be approximated to x0=rsfð�d bWMHDÞ1=5,
which means a much weaker dependence of x0=rs on the po-

tential energy than x0=rsfð�d bWMHDÞ of general internal kink
mode. Thus, the nonlinear waveewave interaction becomes
more important by the slight flattening of q-profile in the early
nonlinear stage of the internal kink modes.
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Generally speaking, the background ion diamagnetic drift
or precessional drift of trapped EPs produced during the
external auxiliary heating can also drive the finite frequency
branches of the modes, corresponding to the diamagnetic
fishbone [8,11] or precessional fishbone [9,10], respectively. In
the linear stage, the properties of the m ¼ 1 mode excited by
trapped fast particles have been discussed for locally flattened
q-profile in previous works [12]. For a large fast ion beta bh,
the waveeparticle interaction dominates the nonlinear dy-
namics of the mode, which is similar to the result of the
trapped fast particle-excited modes [9]. On the other hand,
however, the mode may saturate at a low level due to the
stabilization of barely trapped fast particle or a smaller bh with

Red bWKT0 [8,11].
In the previous linear theory, it was found that the growth

rate of the mode could be determined by [12].
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where L ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ DÞuðu� u*Þ
p

=ðmuAÞ, u* is ion diamag-
netic frequency, the constant ð1þ DÞ ¼ 3 is the inertial
enhancement factor [2]. By combining linear solution of Eq.
(22) with nonlinear solution in the layer of Eq. (21), we find in
the early nonlinear stage, the relation between radial
displacement and mode frequency becomes
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where the constant parameter C ¼ ð9= ffiffiffi
2

p Þ2=5ð4=3Þ4=15P�1=5
max

and m/n ¼ 1 is used. Neglecting ion diamagnetic drift effect, a
weak dependence of x0 on linear growth rate by the scaling of
x0=rsfðg=uAÞ1=3 is explored and clearly different from the
conventional kink/fishbone mode with a positive shear x0=rsf
ðg=uAÞ [2]. It is suggested that MHD nonlinearity rather than
the linear fast particle driving in the layer dominates the mode
saturation when the profile is locally flattened around the
rational surface. The result of Eq. (22) is also valid to the pure
growing mode with g> >ur in the absence of fast particles as��Red bWK

�� ¼ 0, the mode becomes general internal kink
instability with Red bWMHD < 0. On the other hand, for a mar-
ginal stable diamagnetic kink mode as g=uA � 0 with
ur � u*, the mode amplitude depends on linear frequency
with x0=rszCð1=r3s q

000
sÞ1=3ðu�=uAÞ1=3 , which indicates the

relation of nonlinear mode displacement as
x0=rsfðu�=uAÞ1=3. Moreover, we also find that x0=rs signifi-
cantly depends on the zero magnetic shear width (d=rs with q

0 ¼
0) due to d=rs � ðg=uAÞ1=3, when

��d bWMHD

��<< ��Red bWK

��. The
flatness of q-profile determined by the parameter of r3s q

000
has a

relation of x0=rsfðr3s q
000
sÞ�2=5

. It has to be pointed out that, for
simplicity, the modifications of larger ion Larmor radius and
finite plasma resistivity may be significant in this case but not
reported here [8].

4. Summary

In this paper, we have studied the nonlinear properties of
internal kink mode with energetic particles in the flattened q-

profile regimes of q0s ¼ q
00
s ≡ 0. Matching the solutions of the

outer and inner regions to each other, we have also derived the
analytical form of nonlinear displacement of the mode and
represented it as a function of linear mode frequency. Since
there is the weak current/pressure gradient driving in the
current-flattening equilibrium, the fast particle properties play
an important role in the nonlinear dynamic of mode saturation
by changing the potential energy in the outer region.
Neglecting ion diamagnetic drift effect, a weak dependence of

x0 on linear growth rate by the scaling of x0=rsfðg=uAÞ1=3 is
explored and clearly different from conventional kink/fishbone
mode with a positive shear x0=rsfðg=uAÞ. The result also
indicates that the mode saturation amplitude is dominated by
the layer nonlinearity rather than the linear driving when the q-
profile is flattened around q ¼ 1.
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